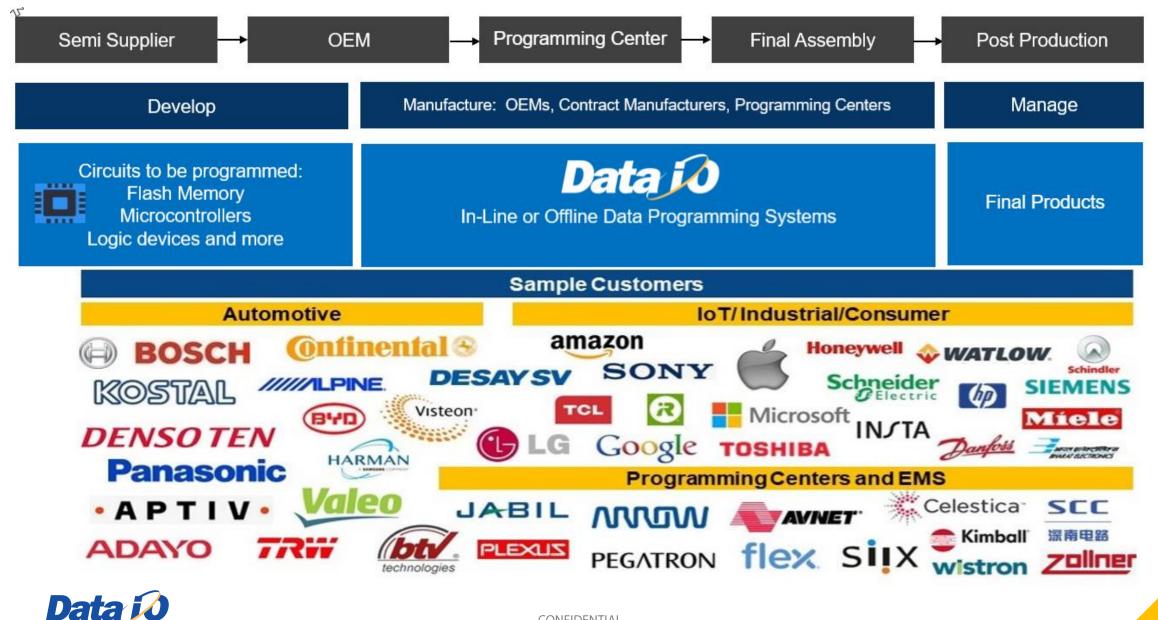


PRE-PROGRAMMED FLASH MEMORY RECOMMENDED BEST PRACTICES, X-RAY AND POST OVEN REFLOW

www.dataio.com


Abstract

Advancements in the flash technology to support larger storage in a small package have raised concerns on the reliability of preprogrammed devices during the manufacturing process. High energy radiation exposure can be a source of stress for some preprogrammed Managed-NAND devices if not managed properly. This stress varies depending on the grade of the managed NAND device including Commercial, Industrial and Automotive. Managed-NAND integrates NAND flash memory and an embedded controller chip in a single package to perform error correction (ECC), wear leveling and bad-block management internally to ensure the integrity of the data programmed in the Flash array. NAND performance is relative to the quality and sophistication designed into the embedded controller firmware.

Production bottlenecks and high cost of programming large files at test make preprogramming the preferred method for production managers building product using high-density eMMC NAND flash. While there are several well documented papers to validate that X-Ray inspection can impact data retention in preprogrammed eMMC NAND devices, little is mentioned regarding technology advancements designed to correct eMMC data retention errors including bit-flips. This session is intended to help production managers better understand eMMC NAND and 3D UFS with a focus on the technology safeguards and recommended best practices to ensure data integrity from the time the eMMC or UFS device is preprogrammed to final product. Error correction code (ECC) enabled eMMC devices preserve data integrity and are essentially immune to "reasonable" doses of irradiation.

Who We Are & What We Do

CONFIDENTIAL

Executive Summary

The rapid growth in NAND automotive flash memory content and **the impact of data retention through X-ray inspection and oven reflow** has become a topic of discussion among automotive electronic suppliers, semiconductor vendors and programming vendors

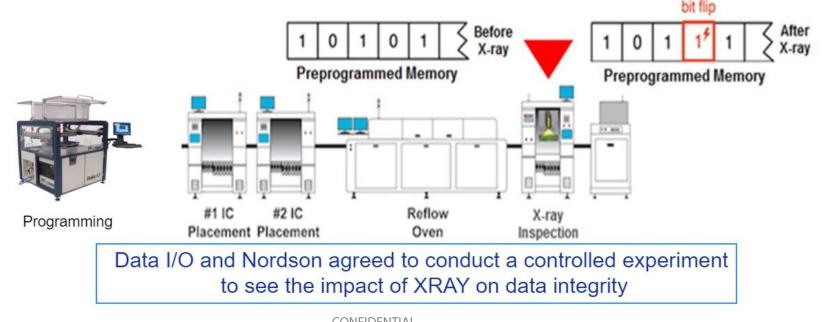
Data I/O partnered with industry leaders to study the impact of x-ray and oven reflow on Managed NAND devices

- X-ray tests were performed with Managed NAND flash in 15nm and 20nm lithography from multiple semiconductor vendors. Our study found that **processing Managed NAND flash through X-ray inspection is safe when following best practices**, with filtering having the biggest impact
- Oven reflow test was performed using automotive grade 3D TLC UFS devices from multiple semiconductor vendors. Our study found that **pre-programming is safe** and full device performance is maintained with a post reflow data refresh

Data I/O has published a set of **recommended best practices and guidelines** to ensure data retention when processing preprogramming Managed-NAND flash through X-ray and oven reflow

Data I/O and Partners Collaborate

	2016	2018	2019
Industry Concern	2D NAND Through Oven Reflow is not Safe	eMMC Managed NAND Through X-Ray is not Safe	3D NAND, TLC Through Oven Reflow is not Safe
Data I/O Response	Joint Study with leading memory vendor, Micron	Joint study with X-ray Vendor, Nordson DAGE	Joint Study with leading memory vendor, Toshiba
	Published Findings at Flash Memory Summit	Published Findings APEX Tech Presentation	Plans to Publish Findings
	Data I/O Recommended Best Practices	Data I/O Recommended Best Practices	Data I/O Recommended Best Practices


Data I/O is the only programming equipment supplier to conduct joint studies with industry partners to address key issues.

X-Ray Problem Statement

Managed-NAND integrates NAND flash memory and an embedded controller chip in a single package to perform error correction (ECC), wear-leveling and bad-block management internally

- Preprogramming is the preferred method for programming large files, gigabytes (GB) of data
- Low Energy Radiation is a source of stress for pre-programmed managed NAND devices

Test Purpose

Education

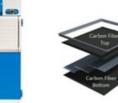
- Understand how an operator sets up an X-ray machine
- Understand the impact of X-ray machine settings on image quality

Criteria

- Sample test using automotive grade Managed-NAND
- Source parts from multiple flash memory suppliers
- Test parts of different process geometry: 15nm and 20nm

Goals

- Find the breaking points, unsafe X-ray setup parameters
- Establish safe X-ray setup parameters that provide a quality image
- Publish a set of recommended best practices



Equipment Used

The following test equipment was used for our X-ray test study:

- Offline X-ray machine, with and without optional filtering tray
- Data Programming and Verification using the Data I/O LumenX desktop programmer
- Two vendors of automotive grade eMMC devices
 - Vendor A at 15nm linewidth
 - Vendor B at 20nm linewidth
- 10 samples of each eMMC test device were preprogrammed with an X/OR data pattern prior to X-ray

Data j0

X-ray Machine Filtering Tray

ay Pro

Device Se Programmer Se

Semi-vendor A (32GB)Semi-vendor B (8GB)15nm Lithography20nm Lithography

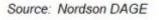
X-ray Test and Data Validation process

1. Insert preprogrammed test device onto tray

Aluminum Tray and Filtering Tray (150 Micron Zinc)

- 2. Input X-ray machine settings
- 3. Verify image quality
- 4. Begin X-ray inspection for targeted time
- 5. Remove device from X-ray
- 6. Insert device into Programmer socket
- 7. Run Verify Test to confirm data integrity (Pass/Fail)
 - If Fail, stop test and discard device, record findings
 - If Pass, reinsert device back into X-ray machine
 - Go to Step #4

QUADRA 7 X-RAY MACHINE


'INTERNAL VIEW'

Without Filtering

With Filtering

Source: Nordson DAGE

Data jo

VENDOR A: TEST PLAN & RESULTS 15NM EMMC, Managed NAND

X-Ra	y Set-up Parameters	Test 1	Test 2	Test 3	Test 4
	Filtering Tray	No	No	No	Yes
	Tube Voltage	120KV	100KV	80KV	80KV
	Tube Wattage	5W	5W	3W	3W
	Distance to Target	1.5mm	12.4mm	12.4mm	12.4mm
	Exposure Time	10 min	5.5 min	5.0 min	5.0 min
	Image Clarity/Quality	Excellent	Excellent	Excellent	Excellent
	Test Results				
≥	1	Fail	Fail	Pass	Pass
A-ra	2			Fail	Pass
5	3				Pass
lou	4				Pass
s th	5				Pass
Times through X-ray	6				Pass
=	7				Fail

Zinc Filtering (150 micron) had the biggest impact

- X-ray setup parameters of 80KV, 3W, 12.5mm distance are typical
- 5 minutes of exposure time is excessive, not typical for inline X-ray

VENDOR B: TEST PLAN & RESULTS 20 NM EMMC, Managed NAND

X-Ra	y Set-up Parameters	Test 1	Test 2	Test 3	Test 4	Test 5
	Filtering Tray	Yes	No	Yes	Yes	Yes
	Tube Voltage	80KV	60KV	60KV	80KV	60KV
	Tube Wattage	3W	2W	3W	2W	2W
	Distance to Target	12.4mm	12.4mm	12.4mm	12.4mm	12.4mm
	Exposure Time	5.0 min				
	Image Clarity/Quality	Excellent	Excellent	Excellent	Excellent	Excellent
	Test Results					
*	1	Pass	Pass	Pass	Pass	Pass
er-y	2	Fail	Fail	Pass	Pass	Pass
Gh	3			Pass	Pass	Pass
Times through X-ray	4			Fail	Fail	Pass
th.	5					Pass
me	6					Fail
Ħ	7					

Zinc Filtering (150 micron) had the biggest impact

• X-ray setup parameters of 60KV, 2W, 12.5mm distance provided a quality image

11

X-ray Test Summary

Processing preprogrammed Managed-NAND Flash Memories through X-ray is safe when following recommended best practices

- Zinc Filtering is the single **most important** requirement
 - Low Energy Photons are filtered out. They do not provide good image quality, but impact device reliability
- Automated XRAY processes are better than a manual inspection as less total time is required
- X-ray machine operators should follow recommended best practices

Multiple Silicon Vendors were able to achieve reliable programming with excellent XRAY image quality when following best practices

Automotive Electronics Tier 1 suppliers can confidently move to 100% XRAY inspection while using Data I/O LumenX programmers

Oven Reflow Problem Statement

Memory devices become increasingly susceptible to reflow induced memory loss as process geometries shrink and reflow temperatures increase. Data I/O previously established that programming was safe with MLC devices. Does this change with automotive grade TLC?

- As vendors move from MLC to TLC devices, will there still be acceptable margin through reflow?
- Is there an impact to cell lifetime if devices are pre programmed?
- What are the best practices for newest generation of devices?

Executive Summary

Data I/O and a leading UFS memory vendor have collaborated to study the impact of oven reflow (temperature) on data retention for Automotive Grade 3D UFS, TLC devices.

Experiment shows:

- *Reflow slows down read performance, but <i>does not cause reliability failures (bit flip).*
- More reflows cause more read performance slow down, but do not cause loss of data.
 - Up to 3 reflows possible
 - Refreshing the device after reflow fixes read performance issues completely

Conclusion: Preprogramming is safe and full performance is maintained with a post reflow refresh

Data i O

PREPROGRAMMING TEST PLAN – AUTOMOTIVE 3D UFS 7 EVALUATIONS, 20PCS OF 128GB, 50PCS OF 256GB (2 FIRMWARE VERSIONS)

Evaluation Process

1. Preprogram (100%), without PSA using specific algorithm for each supplier and device.

2. Reflow at standard profile

3. Read data, check error rate (%)

4. Measure read performance (MB/s)

5. Selective Refresh, measure time

6. Force Refresh, measure time

7. Erase user data

8. Repeat for next reflow cycle

Evaluation-1 (128GB)

-10pcs -Evaluation of reflow 1x

-Evaluation of reflow 2x

Evaluation-2 (128GB)

-10pcs -Evaluation of reflow 1x -Evaluation of reflow 3x

Evaluation-3 (256GB)

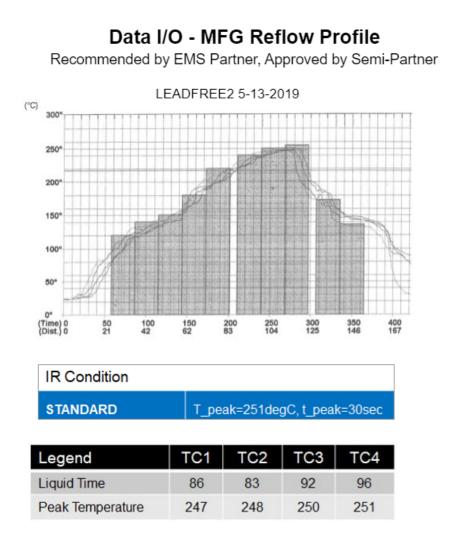
-9pcs-Evaluation of reflow 3x-Ship to vendor for analysis

Evaluation-4 (256GB)

-20pcs -Evaluation of reflow 1x -Evaluation of reflow 2x

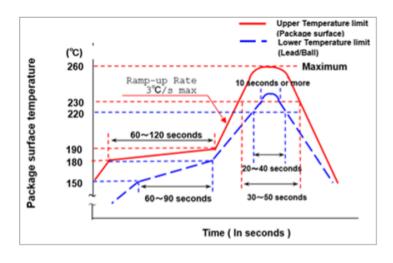
Evaluation-5 (256GB)

-21pcs -Evaluation of reflow 1x -Evaluation of reflow 3x


PROGRAMMERS VS. DUPLICATORS PROGRAMMERS MEET AUTOMOTIVE INDUSTRY STRICT QUALITY STANDARDS

Programmers	Duplicators
IP (Data Files) Stored on a Secure Network	IP (Data Files) Stored on "Master" Devices - Prone to Intellectual Property Theft
Job Changeovers Secured and Managed	Job Changeovers are Prone to Human Error
Supports multivendor UFS Devices - Adjusts critical timing features of unique UFS devices	Generic UFS Interface - May not be suitable for all UFS vendors
UFS Devices Individually Tested	UFS Devices, not Individually Tested
UFS 3.0 Standard Supported - Uses different programming voltages than UFS 2.x	Support for UFS 3.0 may requires HardwareRedesign
Supports Dynamic Data, Serial Numbers	Cannot Serialize IC's
Supports Bare NAND - Hundreds of Bad Block Schemes	Cannot Support Bare NAND - No controller for Back Block Management (BBM)
Supports RPMB - Replay Protected Memory Block Feature	Does Not Support RPMB - Replay Protected Memory Block Feature
Supports Security Provisioning - Asymmetric Keys and Certificates	No Provisioning Support
Supports Full Device Traceability and Reporting	No Unique Device Statistics

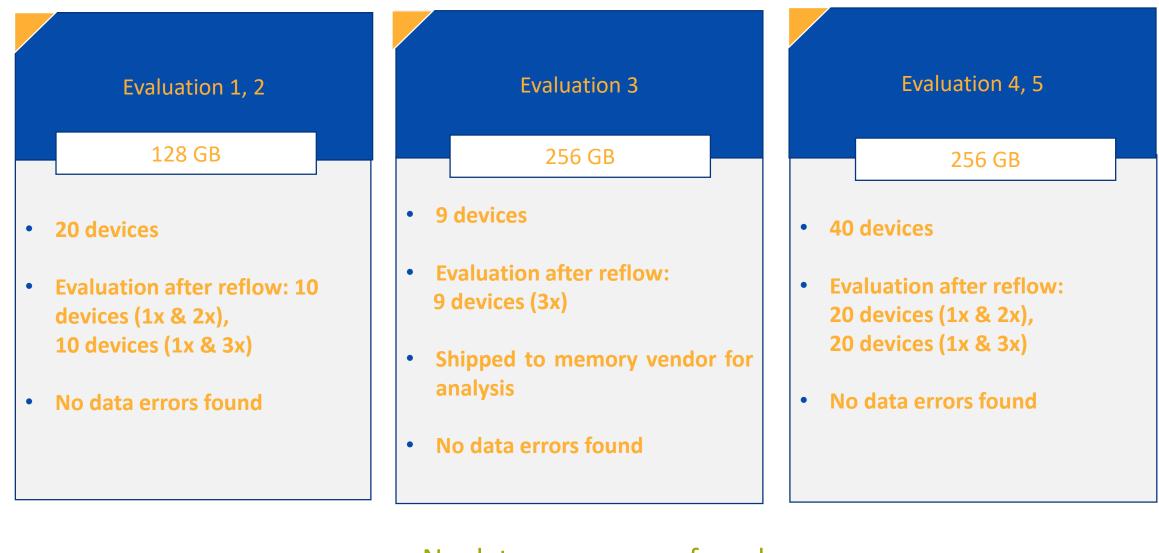
Because of the Process Reliability Concerns with Duplicators, only programming technology was evaluated



2 OVEN REFLOW PROFILES USED - STANDARD MFG AND JEDEC

Semi-Vendor - JEDEC Max Reflow Profile

Used by Semi-Partner

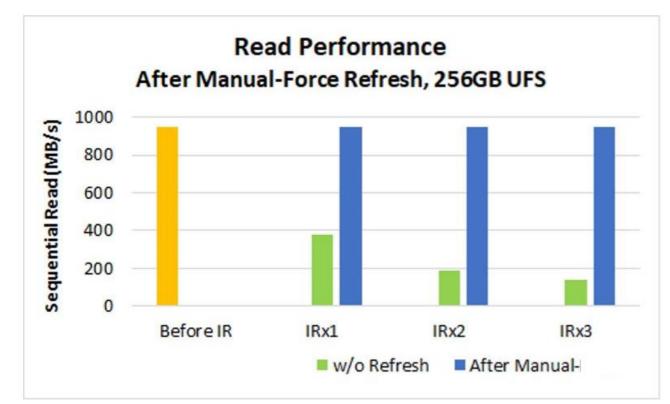


IR Condition	
JEDEC (J-STD-020E)	T_peak=260degC, t_peak=30sec
Profile Name: LE Process Name: P Recipe name: LE Product Name: D User Name: CHH0 Conveyor Speed: Number of Sampl Maximum Distance	ADFRE2 ATA/IO OU TAING 25 es: 424

Liquid Temperature: 217

Data i O

Data Retention Results


No data errors were found

READ PERFORMANCE IS RECOVERED AFTER MANUAL REFRESH

Impact of oven reflow on device read performance

- ✓ Using Manual Refresh, Read performance is **completely** recovered after refresh
- ✓ Data I/O recommends to use Manual Refresh after reflow
 - from both "read performance" and "data retention" points of view

Joint Oven Reflow Test Summary

Preprogramming Automotive Grade 3D UFS, TLC Flash Memory on Data I/O LumenX programmers is safe

- Zero data loss, all tests
- No Impact to Long term reliability

Recommended Manual-Force Refresh after oven reflow restores read performance

• Refresh times are near constant for both Standard MFG Reflow temperature at 251degC, and JEDEC Peak Reflow temperature at 260degC

After the study, the memory supplier decided to support 100% preprogramming

Duplicators were not evaluated and are not recommended for Automotive Programming

Data j0

Thanks!

Bringing Devices to Life

